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ABSTRACT 

The establishment of experimental plots requires assessments of the continuous variation of soil 

properties and interpretation based on the spatial dependence of the most relevant variables. In order 

to predict the variation of soil fertility classes, two alternative spatial analysis techniques were combined. 

The first technique corresponds to the use of geostatistical analysis for the interpolation of individual soil 

properties of chemical and physical nature. The second technique consisted of the application of an 

unsupervised classification system based on fuzzy set theory using the FCM (fuzzy c-means) algorithm 

for the generation of a digital soil fertility class model. For this purpose, a surface sampling was carried 

out in 110 sites in the Experimental Field "El Rastro", El Rastro sector, Francisco de Miranda municipality, 

Guárico state (Venezuela). Ten soil variables were analyzed: pH, electrical conductivity, organic matter, 

available phosphorus, assimilable potassium, available calcium and magnesium, and the relative 

amounts of sand, silt and clay. The measured variables were interpolated at each sampling point using 

ordinary kriging and adjusted using theoretical semivariogram. An inductive method was used to obtain 

soil fertility classes, and a soil class model was obtained based on the integration of the variables. The 

reliability of the individual maps of each soil variable was cross-validated, an analysis of variance was 

applied to corroborate the predictive capacity of the variables, and multivariate statistics were used to 

evaluate the final model. The digital fertility map indicated that seven fertility classes predominate in the 

study area, with a reliability of more than 85%, indicating a high degree of homogeneity within the defined 

soil classes. 

Keywords: Soil Fertility; Geoestatistics; Fuzzy Logic; FCM Algorithm. 

CLASES DE FERTILIDAD DEL SUELO CON TÉCNICAS GEOESTADÍSTICAS Y 

LÓGICA DIFUSA CON FINES EXPERIMENTALES 

RESUMEN 

El establecimiento de parcelas experimentales requiere de evaluaciones de la variación continua de 

propiedades del suelo y la interpretación con base en la dependencia espacial de las variables más 

relevantes. Con la finalidad de predecir la variación de las clases de fertilidad del suelo se combinaron 

dos técnicas alternativas de análisis espacial. La primera técnica corresponde a la utilización del análisis 

geoestadístico para la interpolación de propiedades individuales del suelo de naturaleza química y física. 
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La segunda técnica consistió en la aplicación de un sistema de clasificación no supervisado basado en 

la teoría de conjuntos difusos mediante el algoritmo FCM (c-medias difuso), para la generación de un 

modelo digital de clases de fertilidad del suelo. Para tal fin, se realizó un muestreo superficial en 110 

sitios en terrenos del Campo Experimental “El Rastro”, sector El Rastro, municipio Francisco de 

Miranda-estado Guárico (Venezuela). Se analizaron diez variables del suelo: pH, conductividad 

eléctrica, materia orgánica, fósforo disponible, potasio asimilable, calcio y magnesio disponible, y las 

cantidades relativas de arena, limo y arcilla. Las variables medidas fueron interpoladas en cada punto 

de muestreo utilizando kriging ordinario y ajustadas mediante semivariogramas teóricos. Se utilizó un 

método inductivo para la obtención de las clases de fertilidad del suelo, y se obtuvo un modelo de clases 

de suelo basado en la integración de las variables. La confiabilidad de los mapas individuales de cada 

variable del suelo se realizó mediante validación cruzada, para corroborar la capacidad predictiva de 

las variables se aplicó un análisis de varianza, y para la valoración del modelo final se empleó 

estadística multivariada. El mapa digital de fertilidad indicó que en el área de estudio predominan siete 

clases de fertilidad, las cuales presentaron una confiabilidad superior al 85%, lo que indicó un alto grado 

de homogeneidad dentro de las clases de suelo definidas. 

Palabras clave: Fertilidad del Suelo; Geoestadística; Lógica Difusa; Algoritmo FCM 

 

INTRODUCTION 

Soil fertility is one of the most important soil qualities that can be greatly affected by its 

use and management, and is of great utility for the recognition of soil nutritional status 

and for fine-tuning crop recommendations through nutrient applications from organic 

and inorganic sources. Knowledge of the spatial variation of soil fertility in agricultural 

fields is a fundamental aspect for the definition of the establishment of homogeneous 

productive plots, for site-specific management purposes (Srinivasan et al., 2022; 

Valera y Arias, 2023). Therefore, knowledge of the spatial variation of soil fertility in 

experimental sites is very important for the definition and delimitation of the 

establishment of homogeneous plots, and avoiding overlaps between treatments and 

trials. The manual representation of soil fertility classes requires the elaboration of 

individual maps for each of the variables, and the subsequent superimposition of these 

for the definition of boundaries, which implies biases and low precision in the final 

result. The cartographic representation of soil fertility facilitates decision-making when 

establishing experimental plots and trials for research purposes.  

Conventionally, fertility assessment is done through the analysis of soil test results, 

and the study or experimental areas are considered homogeneous, i.e. the spatial 

variation of attributes is not taken into account. Over time, some cartographic 

techniques have been implemented, which allow obtaining basic and reliable 

information on the spatial expression of soil properties. Within these techniques, 

geostatistical methods play an important role for the spatial prediction of soil properties, 

where the interpolation method called ordinary kriging stands out. However, the 

individual representation of the variables defining soil fertility does not cover the 

interest and the need to visualize the behavior as a whole, in a model of spatial 

variation of soil fertility classes. 

Digital soil mapping (DSM) allows the integration of various models of spatial variation 

of individual soil properties to obtain soil classes, in order to support decision-making 

on area definition as a basis for site-specific management and for the promotion of 
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precision agriculture. The application of DSM through the assessment of the spatial 

variation of soil fertility attempts to divide the soil continuum into classes, which exhibit 

a greater homogeneity of the combined influence of the variables considered in the soil 

analysis. 

There is little research in the field of soil science that takes into account the 

combination of continuous variation of individual properties to express them as soil 

fertility categories. In this respect, the application of fuzzy set theory - as part of artificial 

intelligence technologies - has given a great boost to DSM both in predicting properties 

and in obtaining soil classes. In Venezuela, artificial intelligence technologies have 

been applied in the area of landscape classification and soil attribute prediction (Viloria, 

2007), in geomorphological digital mapping (Valera and Viloria, 2009), Valera et al. 

(2010), Núñez (2011), Viloria et al (2012), Valera (2012) and Viloria et al (2016), in the 

prediction of soil properties and local soil classes (Valera, 2015; Valera, 2018) and in 

the study of soil and banana crop yield relationships (Rey et al., 2015). 

This paper presents a DSM study for the definition of soil fertility classes, through the 

prediction of soil chemical and physical properties obtained in laboratory analyses, and 

their subsequent grouping. To evaluate the spatial behavior of soil fertility classes, the 

Experimental Field "El Rastro" from the National Experimental University of the Central 

Plains "Romulo Gallegos", located on the national road Guardatinajas El Rastro sector, 

El Rastro parish of the Francisco de Miranda autonomous municipality, Guárico state 

(Venezuela), was considered. The main purpose of the research was the spatial 

prediction of soil fertility classes through the theory of fuzzy or fuzzy sets and 

geostatistical techniques, as a basis for the generation of basic information required 

for the development of trials and experimental tests, which allow a spatial vision of the 

fertility status and a better interpretation of the results of the different treatments and 

agronomic trials, as well as field research and evaluations for experimental purposes 

to be developed in the sector studied.  

 

MATERIALS AND METHODS 

Study Area 

The study area where the digital soil mapping test was carried out is located on the 

grounds of the Experimental Field "The Rastro" from the National Experimental 

University of the Central Plains "Romulo Gallegos", located in the sector El Rastro, 

national road Guardatinajas, parish El Rastro, Francisco de Miranda municipality, 

Guárico State, Venezuela (Figure 1). The study unit is framed in a sub-recessional 

plain, with a slope of 2 to 4%. The soils in this area were formed from Quaternary 

geological materials, with an incipient pedogenetic development, and are of low to 

moderate fertility. 
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Figure 1. Relative location of the Experimental Field "El Rastro" in Miranda municipality, 

Guárico state, Venezuela. 

Soil sampling 

For the soil evaluation, a systematic sampling was carried out in the superficial horizon 

at 20 cm depth, in grids spaced at 20 m, for a total of 110 soil samples in an area of 

4.85 ha (Figure 2). Each sampling point was georeferenced with the support of a global 

positioning system (GPS). The surface samples were diagnosed for fertility purposes, 

using the methodologies of the Soil Analysis Laboratory of the Soil and Water 

Research Center of the Rómulo Gallegos University (CIESA-UNERG). Ten soil 

variables were analyzed: pH in water (1:2.5), electrical conductivity in water 1:5 (EC, 

dSm-1), organic matter (OM, %), available phosphorus (P, mgkg-1), assimilable 

potassium (K, mgkg-1), calcium (Ca, mgkg-1) and available magnesium (Mg, mgkg-1), 

and the relative amounts of sand, silt and clay (%).  

Statistical analysis 

Soil property data were subjected to exploratory analysis (EDA) with the support of 

InfoStat software (Di Rienzo et al., 2019), in order to calculate descriptive statistics, 

such as: mean, median, variance, coefficient of variation, maximum and minimum 

values, and skewness and kurtosis indices. Tukey's (1977) outer and inner fences 

methodology was used in order to detect the presence of outliers. Additionally, the 

normality test of Kolmogorov-Smirnov was performed to evaluate the distribution of the 
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data. 

 

Figure 2. Distribution of soil sampling sites in the Experimental Field "El Rastro". 

Interpolation of soil properties 

For the interpolation of soil properties, the ordinary geostatistical kriging method was 

used, which uses a semivariogram model to obtain the weights assigned to each 

reference point used in the estimation of the value of the regionalized variables that 

present spatial dependence. The semivariogram is defined by the semivariance 

function [ (h)], which is estimated with the following expression (Upchurch and 

Edmonds, 1991; Ovalles, 1992): 

2

)h(N

hii )]x(z)x(z[
)h(N2

1
)h(  +−=

                                 (1)                                  

where N is the number of pairs of points separated by a given distance h; z(xi) is the 

value of the variable in a location x; z(xi+h) is the value that the variable takes in another 

location located at a distance h from x (Ovalles and Rey, 1994). The semivariogram 

contains the information concerning the regionalized variable, whose parameters are: 

the nugget variance (C0), the structural variance (C1), the threshold (C0 +C1) and the 

range (A1), which indicates the distance within which spatial dependence exists 
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(Burrough, 1986; Grunwald et al., 2007). The estimation of empirical semivariogram of 

soil properties and fitting to mathematical models was performed with the Vesper 1.6 

program (Minasny et al., 2002). The fitted parameters were used to obtain optimal 

estimates of soil variables at the unsampled sites by interpolation using the ordinary 

kriging method (Webster and Oliver, 1990). Soil property models were generated from 

the total data and the accuracy of the maps was verified by cross-validations. Three 

indices were used in the evaluation: root mean square error (RMSE), mean error (ME) 

and mean absolute error (MAE). The RMSE assesses the accuracy of the prediction 

and measures the amount of error between two data sets, i.e. it compares a predicted 

value and an observed or known value; the ME assesses the systematic error and 

indicates the presence of under- or overestimation of the model; and the MAE ensures 

that the error result is strictly positive.  

Digital soil fertility class model 

The Fuzzy c-Means (FCM) algorithm, implemented in the FuzMe program by Minasny 

and McBratney (2002), was used to generate the digital soil class model. The algorithm 

optimally divides a dataset into a number of classes and computes the memberships 

or degrees of membership of each of the elements in each of the categories. The 

objective of the FCM algorithm (Bezdek, 1981; Bezdek et al., 1984) is to minimize the 

weighted root mean square sum of the distances between the points Zk and the center 

of the class Ck, and the distances d2
ik, are weighted with the membership value i,k. 

Therefore, the objective function is: 


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=
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where Z = {z1, z2 , ..., zn} is the data to be classified, U = [µik], is the fuzzy partition 

matrix of Z, C = [c1, c2 , ...., cc] is the vector of centroids or patterns of the classes to 

be determined, d2
ik is the squared distance between ik, and  [1,) is a weighting 

exponent that determines the degree of fuzziness of the resulting classes. The 

membership function µ from the i-th object to the k-th cluster in the ordinary fuzzy k-

means algorithm employs the distance d used for similarity, and the fuzzy exponent 

() to determine the amount of fuzziness: 
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Once the membership intensities have been determined, the centroids of the classes 

(Ck) are calculated using the following equation:  
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                               (4)                                                   

As for the initialization process, the FCM works by means of an iterative procedure that 
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starts with a random distribution of the soil samples to be classified into k classes (De 

Gruijter and McBratney, 1988). 

Soil fertility classes  

In order to obtain the best fuzzy class model, an inductive approach was used, based 

on the procedure of Odeh et al. (1992), which relates the Fuzziness Performance Index 

(FPI) and the modified partition entropy (MPE) to the number of classes. These 

parameters are obtained using the Fuzzy c-Means (FCM) algorithm (Bezdek, 1981; 

Bezdek et al., 1984) of the FuzMe 3.5 program (Minasny and McBratney, 2002). The 

selection of the optimal number of classes in FCM was performed by repetition of the 

classification for a range of number of classes. For each clustering obtained, two 

classification parameters are generated, such as the FPI and the modified partition 

entropy (MPE). The FPI estimates the degree of fuzziness generated by each specific 

number of classes. Mathematically, it is defined as: 

)]1c/()1cF[(1FPI −−−= ...                                 (5)                                                             

where c is the number of classes and F is the partition coefficient calculated as: 
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F is conceptually comparable to the ratio of the set of within-class variances to the 

between-class variance and is close to 1 for the most significant clustering. In the 

present study, the clustering of soil property maps in raster format was performed by 

previously setting the following parameters: i) number of classes (c= 6 to 12), ii) fuzzy 

exponent () = 1.1 to 1.6 with increments of 0.1; iii) a maximum of 300 iterations, and 

iv) stopping criterion (ε= 0.0001). The Mahalanobis metric distance was used in the 

calculations, which takes into account the correlation found between some soil 

properties of the studied area. 

Assessment of the predictive ability of soil fertility classes 

To evaluate the predictive capacity of the classes obtained by fuzzy clustering, a one-
factor analysis of variance (S2) was performed using the complement of relative 
variance (1-rv) (Beckett and Burrough, 1971), in order to verify the effect of edaphic 
properties on the differentiation of soil fertility classes in the studied sector. This index 
is analogous to the coefficient of determination and expresses the proportion of the 
variance that can be attributed to the classification. Under this criterion, for a 
classification to be worthwhile, the average intraclass variance should be less than the 
total variance (Webster and Oliver, 1990). Finally, the final model was validated with 
the original clustered cases, using the Mahalanobis Distance (D2) as a multivariate 
descriptive statistic, derived from the canonical discriminant analysis. 
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RESULTS AND DISCUSSION 

Statistical analysis 

Descriptive statistics indicated that the average values of the soils correspond to sandy 

loam textural groups, with reactions ranging from moderately to strongly acidic, with 

low phosphorus contents and moderate to high potassium contents, high availability of 

calcium and magnesium, low to medium organic matter contents and no salinity 

problems (Table 1). 

 

Table 1. Descriptive statistics of the soil fertility variables of the experimental field. 

 

Variable1 Min Max Mean Median K As SD Variance CV (%) 

pH (1:2.5) 4,2 6,0 5,1 5,1 -0,28 0,08 0,4 0,1 7,4 

EC (dS m-1) 0,008 0,018 0,012 0,011 0,84 1,26 0,003 0,000 23,1 

P (mg kg-1) 1,0 17,0 6,3 5,0 1,75 1,52 4,1 17,0 65,6 

K (mg kg-1) 2,0 196,0 86,2 89,5 -0,82 0,15 51,0 2.601,0 59,1 

Ca (mg kg-1) 80 420 227,5 220,0 0,55 0,80 76,5 5.855,8 33,6 

Mg (mg kg-1) 3,0 441,0 115,9 77,5 1,37 1,31 105,9 11.204,6 91,3 

OM (%) 0,4 2,5 1,1 1,2 1,48 0,55 0,4 0,2 34,4 

Clay (%) 9,6 24,9 17,0 17,3 -0,30 -0,01 3,3 10,6 19,1 

Sand (%) 59,8 73,1 67,9 67,8 0,12 0,08 2,7 7,3 4,0 

Silt (%) 9,3 23,3 15,1 14,6 -0,11 0,57 2,9 8,4 19,1 

1Number of data: 110, K: Kurtosis, As: Asymmetry, SD: Standard deviation, CV: Coefficient of variation, 

EC: Electrical conductivity, P: Available phosphorus, K: Assimilable potassium, Ca: Available calcium, 

Mg: Available magnesium, OM: Organic matter.  

 

Most of the variables show some similarity between the mean and the median, with 

the exception of the variables P, K, Ca and Mg. At the same time, the greatest 

dispersion of the data is shown by the variables themselves, due to the expression of 

the standard deviation and variance, however the coefficients of variation of the 

variables as a whole do not present problems in terms of the existence of extreme 

values of the data. 

According to the skewness or asymmetry coefficient, the variables pH, K, % clay and 

% sand, comply with the normal probability distribution function, and geostatistical 

methods can be applied to the data. However, for %OM and Ca it is necessary to 

perform a data transformation (normalization) of square root type; and for P, Mg and 

EC, it is necessary to perform a logarithmic transformation for the subsequent 

application of a geostatistical method to the data.  

The application of the test for external and internal fences indicated that the variables 

considered do not present outliers. As for the normality test, the variables K and OM, 

come from normal populations, since the values of the Kolmogorov-Smirnov Z test are 
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highly significant (p> 0.05) (Table 2). However, for the rest of the data it was necessary 

to perform data transformation.  

 

Table 2. Normality test of the soil data set of the Experimental Field "El Rastro". 

 

Variable Statistician df Sig.1 

pH water (1:2.5)       0.095 110 0.016 

EC water (dS m-1) 0.225 110 0.000 

P (mg kg-1) 0.194 110 0.000 

K (mg kg-1) 0.078 110 0.097 

Ca (mg kg-1) 0.126 110 0.000 

Mg (mg kg-1) 0.158 110 0.000 

OM (%)   0.070 110 0.200 

Clay (%) 0.100 110 0.009 

Sand (%)  0.139 110 0.000 

Silt (%)      0.155 110 0.000 
1Significance level α = 0.05; df: degrees of freedom; n= 110. 

 

Interpolation of soil properties 

The estimation of the empirical semivariogram of the soil variables were fitted to 

Gaussian, spherical and exponential mathematical models, respectively (Figure 3), 

considering the isotropic behavior of the variables.  

 

Figure 3. Semivariograms of soil variables in the Experimental Field "El Rastro". 
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The % silt, as obtained by difference of sand and clay contents, was not used in the 

subsequent analyses due to the high correlation with these variables, and to avoid 

obtaining a poorly conditioned matrix, which would interfere in the interpretation of the 

results. The geostatistical parameters derived from the adjustment of the semi-

variograms to different theoretical models are shown in Table 3, and the models for 

each variable are presented in Figure 4. 

Table 3. Geostatistical parameters of the composite semivariograms of soil properties. 

Variables Model C0 C1 A1 C + C1 RMSE AIC RN (%) 

pH (1:2.5)       Spherical 0.02 0.1 53.3 0.17 0.01 75 14.4 

EC (dS m-1) Spherical 1.1E-06 1.0E-05 45.1 0.00 9.4E-07 248 10.1 

P (mg kg-1) Spherical 3.45 17.0 76.3 20.40 0.68 21 16.9 

K (mg kg-1) Exponential 387 2.173 31.7 2.560 42.10 104 15.1 

Ca (mg kg-1) Spherical 0.00 5.934 68.0 5.934 148 129 0.0 

Mg (mg kg-1) Exponential 5.344 7.354 28.5 12.698 570 156 42.1 

OM (%)   Spherical 0.04 0.1 70.4 0.14 0.01 66 31.7 

Clay (%) Gaussian 1.37 9.0 28.5 10.4 0.61 19 13.2 

Sand (%)  Spherical 1.26 6.2 60.6 7.5 0.37 9 16.9 

C0: Nugget variance, C1: Structural variance, C0 + C1: Threshold or sill, A1: Range, AIC: Akaike 

information criterion, RMSE: Root mean square error, RN: Relative nugget ((C1 /C0 +C1)*100). 

  

Figure 4. Maps of soil variables in the experimental field "El Rastro". 
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Assessing the reliability of prediction models 

The results of the validations of the soil variables are shown in Table 4, where the low 

values of the prediction errors, which are very close to zero for the RMSE, ME and 

MAE indices, can be observed.  

Table 4. Prediction error of soil variables by cross-validations. 

Variables 
Index 

RMSE ME MAE 

pH (1:2.5)       0.33 0.00 0.26 

EC (dS m-1) 2.25E-03 -1.19E-05 1.84E-03 

P (mg kg-1) 3.15 0.07 2.23 

K (mg kg-1) 39.52 0.35 32.34 

Ca (mg kg-1) 49.40 0.66 40.86 

Mg (mg kg-1) 102.33 1.63 77.63 

OM (%)   0.31 0.00 0.21 

Clay (%) 2.335 0.003 1.853 

Sand (%)  2.108 0.045 1.693 

RMSE: Root means square error; ME: Mean error, MAE: Mean absolute error. EC: electrical 

conductivity, P: available phosphorus, K: assimilable potassium, Ca: available calcium, Mg: available 

magnesium, OM: organic matter. 

The greatest uncertainty was found in the variables K, Ca and Mg, which had a greater 

variance and higher coefficients of variation than the rest of the attributes, and 

therefore somewhat higher RMSE and MAE values. This last index indicates that there 

is a slight overestimation in the values of K, Ca and Mg. For all the cases evaluated, 

the RMSE and MAE values are lower than the standard deviation, which means that 

they can be considered low, and are therefore suitable for the evaluation of prediction 

models (Marcheti et al., 2010). 

Generation of the digital soil fertility class model 

Soil fertility classes 

The representation of the variation of the fuzzy performance index (FPI) as a function 

of the number of classes for different fuzzy coefficients is shown in Figure 5. The 

diagram shows that the most suitable number of soil classes was obtained with 7 

classes, combined with a of 1.2. The FPI value of 0.30 points to the point of 

intersection at which there is a minimization of the degree of fuzziness, which 

determined the optimal number of classes, characterized by being less diffuse and less 

internally disorganized for the set of variables related to soil fertility. 
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Figure 5. Variation of the fuzzy performance index (FPI) as a function of the number of classes. 

The results of the centroid values for each fertility class (centroids) are shown in Table 

5. This allowed the following statements to be drawn: Class 1 groups soils with the 

lowest potassium and organic matter contents, although with moderately acidic pH. 

Class 2 is characterized by soils with strongly acid pH and the highest phosphorus 

contents in the sector. Class 3 includes soils with moderately acid reactions. Class 4 

corresponds to soils with the highest levels of assimilable potassium and the lowest 

contents of calcium and clay fractions. Class 5 involves soils with the highest organic 

matter content. Class 6 includes soils characterized by high sand contents. Class 7 

groups soils with a sandy-clay loam texture with clay contents above 20%, the highest 

amounts of Calcium and the lowest contents of available Magnesium and Phosphorus.  

Table 5. Centroids of soil fertility classes obtained with the FCM algorithm. 

Soil Variable 

Soil Fertility Class 

1 2 3 4 5 6 7 

pH water (1:2.5)       5.18 4.91 5.29 4.99 5.17 5.09 5.00 

EC water (dS m-1) 0.012 0.013 0.012 0.011 0.011 0.011 0.011 

P (mg kg-1) 6 10 5 5 6 6 4 

K (mg kg-1) 37 72 102 118 114 71 52 

Ca (mg kg-1) 246 227 206 188 192 243 265 

Mg (mg kg-1) 172 127 126 83 111 118 72 

OM (%)   0.94 0.94 0.76 1.2 1.35 1.24 1.17 

Clay (%) 16.6 17.3 17.2 14 17.3 17.5 20.5 

Sand (%)  66.7 67.6 68.1 68.3 67.6 69.2 65.3 

EC: electrical conductivity (1:5), OM: organic matter. 

The application of the FCM algorithm also generated the membership degree values 

of each cell (pixel) to each of the soil fertility classes. The classification produced 

vectors of membership values for each model cell corresponding to each fertility class. 

These values were spatially represented producing individual maps of class 

memberships, which reflect the spatial variation of membership degrees between 0 
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(dark colors) and 1 (light colors), through maps in raster format expressed in Figure 6.  

 

Figure 6. Maps of membership function values for each of the soil fertility classes. 

The combination of the spatial distribution models of membership values produced the 

unified map of soil fertility class variation (Figure 7). To produce this map, the FCM 

algorithm transformed the fuzzy classes into discrete classes, so that each cell of the 

model was assigned to the class with the highest membership value. The final model 

corroborated the distribution of soil fertility classes, where the spatial variation patterns 
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allowed discriminating the dominance of sandy loam soils in the north-eastern sectors, 

and a higher predominance of clays in the south-western region, which is related to 

the grain size distribution processes, where the finest particles accumulate in the lower 

regions of the sector. The final model also made it possible to visualize the expression 

of the boundaries defined by the dominant classes in the surface layer of the soils. 

These boundaries facilitate decision-making for the establishment of experimental 

plots, and enable options for possible explanations related to the study of soil fertility 

and the establishment of crops for experimental and research purposes in the study 

area. 

 

 

Figure 7. Soil fertility class distribution model of the Experimental Field "El Rastro". 

 

With regard to the surface area of the soil units: class 1 occupies 10.6% of the sector 

under evaluation, class 2 occupies an area of 17.3%, class 3 represents 14.1 of the 

area under study, class 4 corresponds to 12.7 of the study area, class 5 corresponds 

to 13.9 of the experimental area, class 6 covers 22.5% of the experimental field under 

consideration, and class 7 occupies 9% of the area under study. 

Assessment of the predictive capacity of the digital soil fertility class model 

The analysis of variance for the one-factor classification allowed obtaining the variance 

of the soil variables by the effect of the fuzzy classes and the complement of the 

relative variance, which is shown in Table 6. The results indicate that in all the 

situations described the average intra-class variance (S2
W) presents lower values than 

the total variance (S2
T), which is an indication that the classifications performed are 
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highly meritorious for the variables considered. According to the results of the relative 

variance complement (1-rv), the proportion of the variance that can be attributed to 

fuzzy classification is above 87% on average. This indicates that there is a high degree 

of homogeneity within the soil classes, which ensures that the predictions that can be 

made from these variables are fairly accurate.  

Table 6. Sample mean, total variance, intraclass variance and complement of relative variance 

for soil properties. 

 

Property Average S2
T S2

W 1-rv 

pH water (1:2.5)       5.10 0.607 0.124 0.796 

EC water (dS m-1) 1.2E-02 3.9E-05 5.6E-06 0.859 

P (mg kg-1) 6.3 165.98 8.79 0.947 

K (mg kg-1) 86.2 17212 1858 0.892 

Ca (mg kg-1) 227.5 21569 5246 0.757 

Mg (mg kg-1) 115.9 43228 9917 0.771 

OM (%)   1.13 0.87 0.12 0.868 

Clay (%) 17.0 106.5 5.29 0.950 

Sand (%)  67.9 45.9 5.38 0.883 

S2
T: Total variance, S2

W: Intraclass variance, 1-rv: complement of the relative variance 

 

Regarding the assessment of the predictive capacity of the soil classes with 

multivariate statistics, the results of the classification carried out are shown in Table 7.  

Table 7. Results of the size-based classification of diffuse soil fertility classes. 

Classes 
Ranking 

 (%)1 

Error  

(%) 

7 85.5 14.5 

1 Correctly classified according to the original grouped cases. 

The Mahalanobis distance (D2) for the original data yielded values above 85%, with an 

uncertainty of less than 15%. In other words, the validation process of the soil fertility 

class model indicated that 85.5% of the original cases were correctly classified. The 

highest degree of uncertainty is given by classes 3 and 6, with errors of 35.7 and 23.1% 

respectively, but in general, confusions occur between neighboring classes. The 

results of the validation of the FCM approach showed that it is an alternative for the 

generation of soil fertility classes. These results are slightly superior to those obtained 

by Zhu et al. (2008) and McKay et al. (2010) who applied a soil inference system for 

soil type prediction at subgroup and soil series level. These investigations expressed 

a reliability of 76 and 73.7%, respectively, for the data-constrained soil maps. 
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CONCLUSIONS 

The soil property maps showed that there are gradual soil changes with respect to the 

attributes that showed spatial dependence, variations of which should be considered, 

as they may affect the reliability of studies, assessments or tests for research 

purposes. 

The experimental plot at El Rastro appears to be homogeneous, according to the 

influence of soil formation factors, however, the unit is not internally homogeneous. 

This could have been influenced by the management of agronomic practices. This 

variability has to be taken into account to avoid a differential effect on the crops. 

The evaluation of the digital fuzzy model indicated that the spatial prediction of soil 

fertility classes corresponds to what is expected in the studied sector, as the reliability 

was higher than 85%. 

The combination of fuzzy set theory and geostatistical techniques provided an 

alternative that can contribute to improve decision making for the location of 

experimental plots and carry out local research of great importance, by generating 

predictions of soil properties and fertility classes with adequate accuracy, capable of 

capturing the continuous variation of soils in the studied sector. 
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